

Hydrogen In Industry, Commercial Transport & Logistics

19 September 2022

www.rev-chain.com

New York | Boston | Austin | Dubai| London |Tampa | New Delh

CONFIDENTIAL

- 30 years of strategy and operations consulting
- Builds carbon-neutral supply chains
- CEO of Boston Strategies International
- Author of *Reinventing the Energy Value Chain* and 5 other books
- Global clientele, e.g., UPS, FedEx, Saudi Aramco, Iberdrola
- Senior Fellow at Boston University's Institute for Sustainable Energy.
- Adjunct Professor at NYU
- MBA (Wharton)

John A. Foote

- Former US Air Force Captain
- Ex Saudi Aramco
- Ex Applied Materials
- Cross-functional
 manufacturing executive
- Strategic supply chain leader
- Negotiates and manages multi-million dollar contracts
- Develops new manufacturing capabilities
- Implements B2B software solutions
- MBA, MS Tech (U. Texas)

From Optimizing Supply Chain Management to Reinventing Value Chains

- Markets
 - Hydrogen & Fuel Cells
 - Energy Storage
 - Wind
 - Solar
 - Biomass
 - Upstream Oil & Gas
 - Midstream Oil & Gas
 - Downstream Oil & Gas
 - Geothermal
 - Gas and Coal-Fired Power
 - Hydropower
 - Nuclear

• Features

- Roadmaps for unlocking latent value in energy supply chains
- Concepts and principles to guide energy investments
- Techniques for optimizing supply chains and systems
- Management techniques for capital project management
- Management techniques for operations & maintenance
- Risk mitigation strategies

DAVID STEVEN JACOBY • ALOK RAJ GUPTA

REINVENTING THE ENERGY VALUE CHAIN

Supply Chain Roadmaps for Digital Oilfields through Hydrogen Fuel Cells

Today: Informational and Broad Intro, with a Close Look at Transport & Commercial Freight Applications

- Basics of Hydrogen
 Hydrogen in Transport
- Why the Hydrogen Buzz
- Hydrogen in Industry

- Hydrogen Economic Risks
- Is Hydrogen Right For You?

Gray H2 in the Natural Gas Chain

- Byproduct of gas production (methane and ammonia can be done quickly today)
- 55% used to make ammonia, 10% used to make methanol, 25% in refining

Source: Reinventing the Energy Value Chain: Supply Chain Roadmaps for Digital Oilfields through Hydrogen Fuel Cells (PennWell, 2021)

Natural Gas to H2 via Steam Methane Reforming

- Byproduct of gas production (methane and ammonia can be done quickly today)
- 55% used to make ammonia, 10% used to make methanol, 25% in refining

Steam Methane Reforming Process

Source: H2-CCS Network. GHR: Gas-Heated Reforming ATR: Autothermal Reforming

Green, Yellow, Pink, and Other Colors of Hydrogen

- Black-black coal, gasification
- Brown-lignite, gasification
- Green-electrolysis, solar/wind electricity, or steam thermolysis
- Yellow-grid electric, carbon loading depends on local grid mix
- Pink-electrolysis, nuclear power
- Turquoise-natural gas, pyrolysis
- Red-nuclear heat, thermolysis
- Purple-nuclear electricity and heat, electrolysis and thermolysis
- Orange-solar irradiance, photolysis

Why the Buzz About Hydrogen

- Why the buzz
 - <u>It's not carbon</u>
 - Many H2 production options
 - Many potential applications
 - Many storage & transport options
- Safety
 - High explosive reactivity
 - Accompanying gas risks
- Economic Risks
 - Today no large-scale hydrogen projects or retrofit infrastructure projects
 - However, wind power @ 3 ¢ / kWh or less can allow H2 production at economic scale
 - Policy factors and regional differences

Source: Energy.gov

 $4H^{+} + 4e^{-} \rightarrow 2H_{+}$

Source: CNBC

Efforts Underway to Cut Green H2 Costs by More than Half

- Massive per-kg cost decreases by 2030
- Green H2 will scale to nearly half of all production between 2030 and 2050
- Meeting 13% of global energy demands by 2050

Source: REVchain™ analysis. Some base data from Rystad, IRENA, USDOE, BNEF, et al.

4

Hydrogen Adoption: Energy Efficiency vs. Lifecycle CO2 Footprint

Hydrogen in Transport

Material Handling Equipment: Energy Density Requirements Will Favor H2

TODAY

- 35-40k fuel cell forklifts in US (2021)
- 95% proton exchange membrane fuel cells (PEMFC) (H2)
- 5% direct methanol fuel cells (DMFC)

OUTLOOK

- 300k in 2030
- H2 no recharging time vs. battery forklifts
- Walmart is expanding its fleet to 9500 H2 forklifts
- Amazon is ordering them.
- PlugPower offers to replace battery forklifts with H2 fuel cells

• Forklifts • Cranes • AGVs • Transtainers • Etc.

Trucks: Heavy Duty More Suitable Weight, Size, and Range for H2

TODAY

- 14k H2 passenger vehicles in the US
- CA building H2 refueling stations
- 54 retail stations opened in CA

OUTLOOK

- Batteries: small trucks, short range
- Hydrogen: heavy duty trucks due to weight & refueling
- Green H2 near coastal areas

- Light Duty (Classes 1, 2)
- Medium Duty (Classes 3, 4, 5, 6)
- Heavy Duty (Classes 7, 8)

Rail & Ocean are Promising Modes for Long-Term H2 Economics

RAIL

TODAY

- CP Experimental Hydrogen Locomotive
- BNSF demonstration project
- Caterpillar, Cummins research
- Chevron, energy company partnerships

OUTLOOK

- Cummins manufacturing in Germany
- Scale economies in R&D and production
- First-mover advantage

<u>OCEAN</u>

TODAY

- Modeling of transition fuels and time horizons
- Ethanol, methanol, hydrogen, ammonia and biodiesel

OUTLOOK

- Major propulsion system redesign
- 20-30 year commercialization cycle
- IMO: 40% less CO2 by 2030
- IMO: 50% less CO2 by 2050

The Use of H2 in Air Freight Presents Many Challenges

TODAY

• Basic research stage

OUTLOOK

• Can't haul batteries due to weight

$\quad \text{and} \quad$

• Biofuels need to be grown on massive scale, won't happen. Won't replace JP4 and JP5 and AB (aviation) gas 115-125 octane.

However:

- Space usage per BTU is low
 - Unless liquified as in space programs, but then safety issues
- Ammonia blends

Hydrogen Outlook: Factors

Year

- Policy & regulatory environment •
 - Bipartisan Infrastructure Law •
 - European Union's regulations •
- Regional economic and political • dynamics
 - California •
 - EU (offshore wind for green • H2)
 - China •
- 2050 Levelized Cost Outlook ٠
 - Methane reforming •
 - Dedicated renewable • electrolysis
 - Grid based electrolysis •

Source: REVchain[™] analysis of data from DNV.

Is Hydrogen Right for You?

REVchain™ Capabilities

Commercial Transport Data Matrix

REVchain™ Analytics

Modes	Vehicle Types	Power Technologies
 Air Transport (Freight/Pasgr) Airport Operations Ground Freight Ocean Shipping Rail Port Operations Warehousing 	 Aircrafts (wide body, narrow body and feeder aircraft) Cargo Vans (Classes 1,2,3) Delivery Robots Drones - Freight Drones - Parcel Delivery Forklifts Heavy Duty Trucks (Classes 7, 8) Medium Duty Trucks (Classes 4,5, 6) Locomotives Tug Boats Containerships (Panamax, Post - Panamax, Neo- Panamax and Ultra Large Container Vessels) Oil Tankers (Product tanker, Panamax, Aframax, Suezmax, VLCC and ULCC) Airport Tractors Airport Tugs Bulk Cargo Ships Automated Guided Vehicles Cranes Transtainers Tug Boats Oil Tankers (Product tanker, Panamax, Aframax, Suezmax, VLCC and ULCC) 	Fuel Cells - Proton-Exchange Membranes Fuel Cells Fuel Cells - Phosphoric Acid Fuel Cells Fuel Cells - Alkaline Fuel Cells Fuel Cells - Molten Carbonate Fuel Cells Fuel Cells - Solid Oxide Fuel Cells Batteries - Lithium-Ion Batteries Batteries - Flow Batteries Hybrids - Self-Charging Hybrids - Plug-In Charging - Level 1 (Slow Speed) Charging - Level 2 (Medium Speed) Charging - Level 3 (High Speed) Hydrogen Refueling - H30 Hydrogen Refueling - H70 Biofuels - Ethanol Biofuels - Methanol Biofuels - Methanol Biofuels - Biodiesel Biojetfuel - Oll-to-Jet Biojetfuel - Oll-to-Jet Biojetfuel - Gas-to-Jet Hydrocarbons - CNG Hydrocarbons - LNG Hydrocarbons - LNG Hydrocarbons - 0.1% Low Sulpher Fuel Oil Hydrocarbons - 1.0% Low Sulpher Fuel Oil Hydrogen

Example scope of analysis: Biodiesel for use in Class 8 Trucks for Ground Freight

Mode

Vehicle Type

Technology

For more information, contact:

David Steven Jacoby REVchain LLC david.steven@rev-chain.com Tel: +1 617 593 2620